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1. Introduction
Much of the fundamental understanding of chaotic dynamics in-
volves concepts from information theory, a field developed primar-
ily in the context of practical communication. Information theory
concepts used in chaos include metric entropy, topological entropy,
Markov partitions, and symbolic dynamics [1]. On the other hand,
because of their exponential sensitivity, chaotic systems are often
said to evolve randomly. This terminology is partially justified if one
regards the information obtained by detailed observation of the cha-
otic orbit as being less significant than the statistical properties- nf the
orbits. The object of this report is to show that we can use the close
connection between the theory of chaotic systems and information
theory in a way that is more than purely formal. In particular, we
can use the fact that chaos can be controlled with small perturbations
[2,3] to car se the symbolic dynamics of a chaotic system to track a
prescribed symbol sequence; this technique allows us to encode any
desired message in the signal from a chaotic oscillator. The natural
complexity of chaos thus provides a vehicle for information trans-
mission in the usual sense. Furthermore, we argue that this method
of communication will often have technological advantages.

2. Using a Chaotic Oscillator for Symbol Transmission
Assume that there is an electrical oscillator producing a large-ampli-
tude chaotic signal that one wishes to use for communication. The
so-called double-scroll electrical oscillator [4] yields a chaotic signal
consisting of a seemingly random sequence of positive and negative
peaks. If we associate a positive peak with a one and a negative peak
with a zero, the signal yields a binary sequence. Furthermore, we
can use small control perturbations to cause the signal to follow an
orbit whose binary sequence represents the information we wish to
communicate. Hence the chaotic power stage that generates the
waveform for transmission can remain simple and efficient (com-
plex chaotic behavior occurs in simple systems), while all the com-
plex electronics controlling the output remains at the low-power
microelectronic level.

The basic strategy is as follows. First, examine the free-running (i.e.,
uncontrolled) oscillator and extract from it a symbolic dynamics that
allows one to assign symbol sequences to the orbits on the attractor.
Typically, some symbol sequences are never produced by the free-
running oscillator. The rules specifying allowed and disallowed se-
quences are called the grammar. Methods for determining the gram-
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mar (or an approximation to it) of specific systems have been consid-
ered in several theoretical [5,61 and experimental [7,8] works. (In the
engineering literature, a similar concept exists in the context of con-
strained communication channels.) The next step is to choose a code
whereby any message that can be emitted by the information source
can be encoded by symbol sequences that satisfy suitable constraints
imposed by the dynamics in the presence of the control. (The con-
struction of codes with such constraints is a standard problem in in-
formation theory [9,10]; we intend to discuss this problem in the
context of communicating with chaos, along with the required gen-
eralizations, in a longer paper [111.) The code cannot deviate much
from the grammar r-f the free-running oscillator because we envision
using only tiny controls that cannot grossly alter the basic topologi-
cal structure of the orbits on the attractor. Once the code is selected,
the next problem is to specify a control method whereby the orbit
can be made to follow the symbol sequence of the information to be
transmitted. Finally, the transmitted signal must be detected and
decoded.

3. Characterizing the Symbolic Dynamics
A simple numerical example illustrates how the preceding strategy
is carried out. Figure 1(a) is a schematic diagram of the electrical cir-
cuit producing the so-called double-scroll chaotic attractor [4]. The
nonlinearity comes from a nonlinear negative resistance represented
by the voltage VR in figure 1. (Different realizations of the negative
resistance are possible; we have constructed one using an opera-
tional amplifier circuit,* and are designing an experiment using this
oscillator to demonstrate information transmission using chaos.)
The differential equations describing the double-scroll system are

Cl~c, = G(vc - vc,)- g(vc)

C2 7)C. = G(vc1 - VCZ) + i
L iL = -VC2

where (as labelled in fig. la) C1, C2 are capacitances, G is a passive
conductance, vc 1, vc 2 are voltages, iL is inductor current, and L is in-
ductance. The negative resistance i-v characteristic g is shown in fig-
ure 1(b). For our example, we use the normalized parameter values
used by Matsumoto [41: C1 = 1/9, C2 = 1, L = 1/7, G = 0.7, mo = -0.5,
ml = -0.8, and Bp = 1 (where mo, ml, and Bp, are defined in fig. 1b).
For a Poincar6 surface of section (see fig. 2), we take the surfaces iL =

*Andrea Mark, an engineering student at Drexel University, constructed the circuit during her summer employment

at ARL.
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Figure 1. Double-scroll oscillator: (a) electrical schematic, and (b) nonlinear negative resistance
i-v characteristic g.

Figure 2. Double- 2.5.
scroll oscillator state-
space trajectory
projected on iL-vCi
plane showing two M
branches of surface of .
section.

-2.51 t
-2.5 -0.0 2.5

Voltage, vc.

±tGF, I vc 1 : <F, where F = Bp(mo - ml)/(G + mo), so that these half-
planes intersect the attractor with edges at the unstable fixed points
at the center of the attractor lobes. Figure 2 shows a trajectory of the
double-scroll system with the two branches of the surface of section
labeled 0 and 1. (The plane surfaces are edge-on in the figure.) The
intersection of the strange attractor with the surface of section is ap-
proximately a single straight line segment on each of the two
branches. Let x denote the distance along this straight line segment
from the fixed point at the center of the respective lobe, x = (F -
I vc, I) cos 0 + I vc2l sin 0, where 0 is the angle that the line segment
makes with the iL-vC1 plane. Because absolute values are used in de-
fining x, we can use the same x coordinate for both lobes of the
attractor.

To construct a description of the symbolic dynamics of the system,
we run the computer simulation without control. When the free-run-
ning system state point passes through the surface of section, we
record the value of the generalized coordinate x (restricted to 1000
discrete bins for the computer simulation), and then record the sym-
bol sequence that is generated by the system after the state point
crosses through the surface. Suppose the system generates the bi-
nary symbol sequence bib2b3 ... We represent this by the real num-
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ber O.bjb 2b3 ... , so that each symbol sequence corresponds to the real
number r = 1 o 1 bn2-", and symbols that occur at earlier times are
given greater weight.

We refer to the number r, specifying the future symbol sequence, as
the symbolic state of the system. This defines a function mapping the
state-space coordinate x on the surface of section to the symbolic co-
ordinate r. This function r(x) (which we call the codig function) is
shown in figure 3. (The function gives actual symbol sequences
when referring to the 0 lobe, and the bitwise complement when re-
ferring to the 1 lobe.) Because the oscillator is only approximately
described by a binary sequence, multiple values of x lead to the
same future symbol sequence. (We only need to track one of them.
More sophisticated techniques both for symbol assignment and
symbol sequence ordering are discussed in the longer paper [11].)
Because the intersection of the attractor with the surface of section is
only approximately one-dimensional, there is a slight uncertainty in
the symbolic state for some values of x; this uncertainty is indicated
by the shading in the regions between the upper and lower bounds
on the value of r in figure 3.

Observations of the time waveform produced by the oscillator sug-
gest that the grammar is simple: Any sequence of binary symbols is
allowed, except that there can never be less than two oscillations of
the same polarity. (In fact, we have used our technique to stabilize a
period three orbit on one lobe of the attractor, thus demonstrating
that an arbitrarily long sequence of symbols of the same polarity is
possible.) This no-single-oscillation rule leads to a very simple cod-
ing: Insert an extra one after every block of ones in the binary stream
to be transmitted, and an extra zero after every block of zeros. This
altered data stream now satisfies the constraints of the grammar,
and is uniquely decodable: Simply remove a one from every block of
ones upon reception, and a zero from every block of zeros. Thus k
oscillations of a given polarity represent k - 1 information bits.

Figure 3. Binary
coding function r(x)
for double-scroll
system.

o 0.5
.0
E

6.1 0.3 0.5 0.7

State-space coordinate, x
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4. Controlling Symbol Transmission

It is possible to control the oscillator so that it follows a desired bi-
nary symbol sequence by the use of a simple control algorithm. (A
more sophisticated technique will be used in the experiment, but the
simple procedure suffices for heuristic purposes.) Say the system
state point passes through branch 0 of the surface of section (shown
in fig. 2) at x = x,, and next crosses the surface of section (on either
branch 0 or 1) at x = Xb. Because we have previously determined the
function r(x), we can use the stored values to find the symbolic state
r(xa). We then convert the number r(xa) to its corresponding binary
sequence truncated at some chosen length N, and store this finite-
length symbol sequence in a code register. As the system state point
travels towards its next encounter with the surface of section at x =
xb, we shift the sequence in the code register left, discarding the most
significant bit (the leftmost bit), and insert the first desired informa-
tion code bit in the now empty least significant slot (the rightmost
slot) of the code register. We then convert this new symbol sequence
to its corresponding symbolic state rb.

When the system state point crosses the surface of section at x = xb,
we use a simple search algorithm to find the nearest value of the co-
ordinate that corresponds to the desired symbolic state r', call this
x'. By construction, I r(xb) - r(x4) I 2- . (If r(x) is continuous, as in
the Lorenz system, for example, this search can be replaced by a
more efficient local derivative projection to find the desired value of
x.) Now let 6x = xb - x'4. Because we have chosen the branches of the
surface of section at constant values of the inductor current il, the
deviation bx in the generalized coordinate corresponds to a devia-
tion in the voltages vc, and vc 2 across the two capacitors in figure 1.
We thus apply a vector correction parallel to the surface of section
(at constant iL) along the attractor cross section to put the orbit at x =
xi. This small correcting voltage perturbation is given by bvc1 = "-6x
cos 0, 6vc 2 = _x sin 0, where the + signs are used for lobe 1 of the
attractor, and the - signs for lobe 0. We plan to do this experimen-
tally with current pulse generators connected in parallel with each
capacitor.

On each successive pass through the surface of section, a new code
bit is shifted into the code register, and we repeat the procedure to
correct the state-space coordinates, an(' thus the symbolic state, of
the system. The coded information sequence, because it is shifted
through the code register, does not begin to appear in the output
waveform until N iterations of the procedure, where N is the length
of the code register. If the symbol sequence is coming from a prop-
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erly coded discrete ergodic information source, the process of shift-
ing the information sequence through the code register can be
viewed as locking the symbolic dynamics of the oscillator to the in-
formation source. Thus, there is a short transient phase during
which the symbolic dynamics of the oscillator is being locked to the
information source, and the symbolic dynamics of the oscillator is
always N bits behind the information source.

Figure 4 shows an encoded waveform for the double-scroll system
produced by the described technique. This waveform corresponds
to the voltage waveform vG across the passive conductance G. If the
conductance G is replaced by a transmission channel of the same
impedance, the signal produced can be transmitted through the
channel. We have represented each letter of the Roman alphabet by
the binary number for its location in the alphabet, and added the ex-
tra bits (satisfying the no-single-oscillation constraint) to encode the
word "chaos." We have applied the technique first to bring the sys-
tem to a periodic orbit about lobe 1 of the attractor, then to execute
the writing of the word, and then to bring the system back to a peri-
odic orbit about lobe 0. The trajectory shown in figure 2 is actually
the encoded trajectory, but this is not apparent in the figure because
the controlled trajectory approximates a possible natural trajectory.
The root-mean-squared amplitude of the control signal over the
writing of the word was of order 10-3 in the normalized units. The
control probably cannot be made much smaller with this simple
technique, primarily because the one-dimensional approximation in
the surface of section causes the coding function to be slightly inac-
curate. This control amplitude, though already very small compared
to the oscillator signal voltages, does not appear to be a fundamental
limit, and we are developing control techniques to reduce it.

Figure 4. Controlled 3.0
vG(t) signal for periodic c: 3 h: 8 a: I o:15 s: 19
double-scroll system
encoded with word
"chaos." Each letter is
shown at top of
figure, along with its
numerical position in 0.

o, 0.0-alphabet. Shown at (
bottom are
corresponding binary >
codewords. Extra bits
(indicated by
commas) are added to L "n
satisfy constraints 030,11, 0,1,000 10000,1,1,111111,00,11 periodic
imposed by grammar. -3.0 100 200

Time, t
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5. Concluding Remarks
We conclude with some comments concerning the scope, applica-
tion, and theoretical significance of our technique.

1. Since we envision the transmitted signal to be a single scalar, its in-
stantaneous value does not specify the full system state of the cha-
otic oscillator, and in some cases it might be that such knowledge
will be necessary to determine the symbol sequence. If the full sys-
tem state is needed to extract the symbol sequence, time delay em-
bedding [12] can be used. As our example using the double-scroll
equations shows, however, time delay embedding is not always
necessary.

2. Because our control technique uses only small perturbations,* the
dynamical motion of the system is approximately described by the
equations for the uncontrolled system. Knowing the equations of
motion greatly simplifies the task of removing noiset [13,14] from a
received signal.

3. Signals that are generated by chaotic dynamical systems and carry
information in their symbolic dynamics have an interesting and pos-
sibly useful property: More than one encoded symbol can be ex-
tracted from a single sample of the trajectory if time delay embed-
ding is used. To do this, we use the state-space partition for a higher
order iterate of the return map [11] of the system.

4. Much of the theory needed to understand information transmission
using chaotic dynamical systems already exists. For example, be-
cause the topological entropy [15] of a dynamical system is the
asymptotic growth exponent of the number of finite symbol se-
quences that the system can generate (given the best state-space par-
tition), the channel capacity of a chaotic system used for information
transmission is given by the topological entropy. The types of chan-
nel constraints that arise with a chaotic system will be discussed in a
longer paper [11], along with other theoretical considerations.

5. We emphasize that the particular methods for control and coding
used in our double-scroll example were chosen for simplicity, and

*Our. control technique can also be used to target a chaotic system [2,31 in state space. Once the relation between sym-
bolic states and state-space coordinates is established by the codingfunction r(x), this technique provides a remarkably
simple way of doing targeting. We simply shift into the code register the truncated binary string corresponding to the
symbolic state r of the desired state-space target x. The technique may also be used to control the dynamics in com-
puter experiments: There is the possibility of using different information source statistics to explore different permis-
sible state-space dynamics.
tlt is easier to filter noise that is introduced in the communication channel than it is to filter noise that is present in
the chaotic oscillator itself.
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that other more optimal methods are possible. Also, the double-
scroll oscillator itself was chosen because it is simple, and a large
body of research is available about its dynamics. It is not intended as
an example of a practical oscillator for communication waveform
synthesis. It may be possible to use a higher dimensional chaotic sys-
tem for improved performance (higher information rate and better
noise immunity), roughly analogous to the use of complex signaling
constellations in classical communication systems.

6. There has been much discussion of the role of chaos in biological
systems, and we speculate that the control of chaos with tiny pertur-
bations may be important for information transmission in nature.
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